The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations.
نویسندگان
چکیده
Monte Carlo (MC) simulations significantly contributed to a better understanding of laser-Doppler flowmetry (LDF). Here it is shown that the data obtained from standard MC simulations can be reinterpreted and used to extract more information such as the photo-electric current (i(t)). This is important because i(t) is the starting point for evaluating any existing or new algorithm to be used in LDF instrumentation. This circumvents the tedious procedure of generating a specific model (often approximated if possible at all) each time a different algorithm is considered. By a series of tutorial examples, the influence of various parameters is investigated, e.g. sampling rate, total acquisition time and dc filtering. These cases also demonstrate the fundamental role played by the photons' random phase in the shaping of the LDF signal. In particular, it is demonstrated by MC simulation that when the number of photon-moving red blood cell interactions is too low, then the Siegert relation that exists between the field and photo-electric current autocorrelation functions does not hold. This is an important point because the validity of the Siegert relation is implicitly admitted in the majority of the classical analytical models for the autocorrelation function in LDF (the classical MC approach does not allow one to study this problem). The proposed method and examples could stimulate new ideas and help the scientific community develop, test and validate new approaches in LDF.
منابع مشابه
Laser-Doppler flowmetry at large interoptode spacing in human tibia diaphysis: Monte Carlo simulations and preliminary experimental results.
Laser-Doppler flowmetry (LDF) is an outstanding tool to monitor blood flow in a continuous and non-invasive way. In this work, we study LDF at large interoptode spacing applied to a human bone model (i.e. tibia diaphysis). To that aim, we first performed an extensive set of Monte Carlo (MC) simulations for 10 and 25 mm interoptode spacing. Second, we have assembled a dedicated LDF instrumentati...
متن کاملTime-domain algorithm for single-photon laser-Doppler flowmetry at large interoptode spacing in human bone.
A new laser-Doppler flowmeter at large interoptode spacing, based on single-photon counting (single-photon laser-Doppler flowmetry [SP-LDF]) and allowing assessment of blood flow deep in bone tissue, is proposed and implemented. To exploit the advantages of the new SP-LDF hardware, a dedicated simple and efficient time-domain algorithm has been developed. The new algorithm is based on the zero-...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملInverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry.
The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1....
متن کاملConcurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation
Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 54 14 شماره
صفحات -
تاریخ انتشار 2009